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The potential for continued economic growth comes from the vast 
search space that we can explore. The curse of dimensionality is, for 
economic purposes, a remarkable blessing. To appreciate the potential 
for discovery, one need only consider the possibility that an extremely 
small fraction of the large number of potential mixtures may be valu-
able. (Romer 1993, 68– 69)

Deep learning is making major advances in solving problems that 
have resisted the best attempts of the artifi cial intelligence community 
for years. It has turned out to be very good at discovering intricate 
structure in high- dimensional data and is therefore applicable to many 
domains of science, business, and government. (LeCun, Bengio, and 
Hinton 2015, 436)

5.1 Introduction

What are the prospects for technology- driven economic growth? Tech-
nological optimists point to the ever- expanding possibilities for combin-
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ing existing knowledge into new knowledge (Romer 1990, 1993; Weitzman 
1998; Arthur 2009; Brynjolfsson and McAfee 2014). The counter case 
put forward by technological pessimists is primarily empirical: growth at 
the technological frontier has been slowing down rather than speeding up 
(Cowen 2011; Gordon 2016). Gordon (2016, 575) highlights this slowdown 
for the US economy. Between 1920 and 1970, total factor productivity grew 
at an annual average compound rate of 1.89 percent, falling to 0.57 per-
cent between 1970 and 1994, then rebounding to 1.03 percent during the 
information technology boom between 1994 and 2004, before falling again 
to just 0.40 percent between 2004 and 2014. Even the maintenance of this 
lowered growth rate has only been possible due to exponential growth in 
the number of research workers (Jones 1995). Bloom et al. (2017) document 
that the total factor productivity in knowledge production itself  has been 
falling both in the aggregate and in key specifi c knowledge domains such as 
transistors, health care, and agriculture.

Economists have given a number of explanations for the disappointing 
growth performance. Cowen (2011) and Gordon (2016) point to a “fi shing 
out” or “low- hanging fruit” eff ect—good ideas are simply becoming harder 
to fi nd. Jones (2009) points to the headwind created by an increased “burden 
of knowledge.” As the technological frontier expands, it becomes harder for 
individual researchers to know enough to fi nd the combinations of knowl-
edge that produce useful new ideas. This is refl ected in PhDs being awarded 
at older ages and a rise in team size as ever- more specialized researchers must 
combine their knowledge to produce breakthroughs (Agrawal, Goldfarb, 
and Teodoridis 2016). Other evidence points to the physical, social, and 
institutional constraints that limit access to knowledge, including the need 
to be physically close to the sources of knowledge (Jaff e, Trajtenberg, and 
Henderson 1993; Catalini 2017), the importance of social relationships in 
accessing knowledge (Mokyr 2002; Agrawal, Cockburn, and McHale 2006; 
Agrawal, Kapur, and McHale 2008), and the importance of institutions in 
facilitating—or limiting—access to knowledge (Furman and Stern 2011).

Despite the evidence of a growth slowdown, one reason to be hopeful 
about the future is the recent explosion in data availability under the rubric 
of “big data” and computer- based advances in capabilities to discover and 
process those data. We can view these technologies in part as “meta tech-
nologies”—technologies for the production of new knowledge. If  part of the 
challenge is dealing with the combinatorial explosion in the potential ways 
that existing knowledge can be combined as the knowledge base grows, then 
meta technologies such as deep learning hold out the potential to partially 
overcome the challenges of fi shing out, the rising burden of knowledge, and 
the social and institutional constraints on knowledge access.

Of course, meta technologies that aid in the discovery of new knowledge 
are nothing new. Mokyr (2002, 2017) gives numerous examples of how scien-
tifi c instruments such as microscopes and x-ray crystallography signifi cantly 
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aided the discovery process. Rosenberg (1998) provides an account of how 
technology- embodied chemical engineering altered the path of discovery in 
the petrochemical industry. Moreover, the use of artifi cial intelligence (AI) 
for discovery is itself  not new and has underpinned fi elds such as chemin-
formatics, bioinformatics, and particle physics for decades. However, recent 
breakthroughs in AI such as deep learning have given a new impetus to these 
fi elds.1 The convergence of  graphical processing unit (GPU)- accelerated 
computing power, exponential growth in data availability buttressed in part 
by open data sources, and the rapid advance in AI- based prediction tech-
nologies is leading to breakthroughs in solving many needle- in-a- haystack 
problems (chapter 3, this volume). If  the curse of dimensionality is both 
the blessing and curse of discovery, advances in AI off er renewed hope of 
breaking the curse while helping to deliver on the blessing.

Understanding how these technologies could aff ect future growth dynam-
ics is likely to require an explicitly combinatorial framework. Weitzman’s 
(1998) pioneering development of a recombinant growth model has unfor-
tunately not been well incorporated into the corpus of growth theory litera-
ture. Our contribution in this chapter is thus twofold. First, we develop a 
relatively simple combinatorial- based knowledge production function that 
converges in the limit to the Romer/ Jones function. The model allows for 
the consideration of how existing knowledge is combined to produce new 
knowledge and also how researchers combine to form teams. Second, while 
this function can be incorporated into existing growth models, the specifi c 
combinatorial foundations mean that the model provides insights into how 
new metatechnologies such as artifi cial intelligence might matter for the path 
of future economic growth.

The starting point for the model we develop is the Romer/ Jones knowl-
edge production function. This function—a workhorse of modern growth 
theory—models the output of new ideas as a Cobb- Douglas function with 
the existing knowledge stock and labor resources devoted to knowledge 
production as inputs. Implicit in the Romer/ Jones formulation is that new 
knowledge production depends on access to the existing knowledge stock 
and the ability to combine distinct elements of that stock into valuable new 
ideas. The promise of  AI as a meta technology for new idea production 
is that it facilitates the search over complex knowledge spaces, allowing 
for both improved access to relevant knowledge and improved capacity to 
predict the value of new combinations. It may be especially valuable where 
the complexity of the underlying biological or physical systems has stymied 
technological advance, notwithstanding the apparent promise of new fi elds 
such as biotechnology or nanotechnology. We thus develop an explicitly 
combinatorial- based knowledge production function. Separate parameters 

1. See, for example, the recent survey of the use of deep learning in computational chemistry 
by Garrett Goh, Nathan Hodas, and Abhinav Vishnu (2017).
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control the ease of knowledge access, the ability to search the complex space 
of potential combinations, and the ease of forming research teams to pool 
knowledge access. An attractive feature of our proposed function is that the 
Romer/ Jones function emerges as a limiting case. By explicitly delineating 
the knowledge access, combinatorial and collaboration aspects of knowl-
edge production, we hope that the model can help elucidate how AI could 
improve the chances of solving needle- in-a- haystack- type challenges and 
thus infl uence the path of economic growth.

Our chapter thus contributes to a recent but rapidly expanding literature 
on the eff ects of AI on economic growth. Much of the focus of this new 
literature is on how increased automation substitutes for labor in the produc-
tion process. Building on the pioneering work of Zeira (1998), Acemoglu 
and Restrepo (2017) develop a model in which AI substitutes for workers in 
existing tasks, but also creates new tasks for workers to do. Aghion, Jones, 
and Jones (chapter 9, this volume) show how automation can be consistent 
with relatively constant factor shares when the elasticity of  substitution 
between goods is less than one. Central to their results is Baumol’s “cost 
disease,” which posits the ultimate constraint on growth to be from goods 
that are essential but hard to improve rather than goods whose production 
benefi ts from AI- driven technical change. In a similar vein, Nordhaus (2015) 
explores the conditions under which AI would lead to an “economic singu-
larity” and examines the empirical evidence on the elasticity of substitution 
on both the demand and supply sides of the economy.

Our focus is diff erent from these papers in that instead of emphasising the 
potential substitution of  machines for workers in existing tasks, we empha-
sise the importance of  AI in overcoming a specifi c problem that impedes 
human researchers—fi nding useful combinations in complex discovery 
spaces. Our chapter is closest in spirit to Cockburn, Henderson, and Stern 
(chapter 4, this volume), which examines the implications of  AI—and deep 
learning in particular—as a general purpose technology (GPT) for inven-
tion. We provide a suggested formalization of  this key idea. Nielsen (2012) 
usefully illuminates the myriad ways in which “big data” and associated 
technologies are changing the mechanisms of  discovery in science. Nielsen 
emphasizes the increasing importance of  “collective intelligence” in formal 
and informal networked teams, the growth of  “data- driven intelligence” 
that can solve problems that challenge human intelligence, and the impor-
tance of increased technology facilitating access to knowledge and data. We 
incorporate all of  these elements into the model developed in this chapter.

The rest of the chapter is organized as follows. In the next section, we 
outline some examples of how advances in artifi cial intelligence are chang-
ing both knowledge access and the ability to combine knowledge in high- 
dimensional data across a number of domains. In section 5.3, we develop an 
explicitly combinatorial- based knowledge production function and embed 
it in the growth model of  Jones (1995), which itself  is a modifi cation of 
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Romer (1990). In section 5.4, we extend the basic model to allow for knowl-
edge production by teams. We discuss our results in section 5.5 and conclude 
in section 5.6 with some speculative thoughts on how an “economic singu-
larity” might emerge.

5.2  How Artifi cial Intelligence Is Impacting the 
Production of Knowledge: Some Motivating Examples

Breakthroughs in AI are already impacting the productivity of scientifi c 
research and technology development. It is useful to distinguish between 
such meta technologies that aid in the process of search (knowledge access) 
and discovery (combining existing knowledge to produce new knowledge). 
For search, we are interested in AIs that solve problems that meet two condi-
tions: (a) potential knowledge relevant to the process of discovery is subject 
to an explosion of data that an individual researcher or team of researchers 
fi nds increasingly diffi  cult to stay abreast of (the “burden of knowledge”); 
and (b) the AI predicts which pieces of knowledge will be most relevant to 
the researcher, typically through the input of search terms. For discovery, 
we also identify two conditions: (a) potentially combinable knowledge for 
the production of  new knowledge is subject to combinatorial explosion, 
and (b) the AI predicts which combinations of existing knowledge will yield 
valuable new knowledge across a large number of domains. We now consider 
some specifi c examples of how AI- based search and discovery technologies 
may change the innovation process.

5.2.1 Search

Meta� produces AI- based search technologies for identifying relevant 
scientifi c papers and tracking the evolution of scientifi c ideas. The company 
was acquired by the Chan- Zuckerberg Foundation, which intends to make 
it available free of charge to researchers. This AI- based search technology 
meets our two conditions for a meta technology for knowledge access: (a) the 
stock of scientifi c papers is subject to exponential growth at an estimated 
8– 9 percent per year (Bornmann and Mutz 2015), and (b) the AI- based 
search technology helps scientists identify relevant papers, thereby reduc-
ing the “burden of knowledge” associated with the exponential growth of 
published output.

BenchSci is an AI- based search technology for the more specifi c task of 
identifying eff ective compounds used in drug discovery (notably antibod-
ies that act as reagents in scientifi c experiments). It again meets our two 
conditions: (a) reports on compound effi  cacy are scattered through mil-
lions of scientifi c papers with little standardization in how these reports are 
provided, and (b) an AI extracts compound- effi  cacy information, allow-
ing scientists to more eff ectively identify appropriate compounds to use in 
experiments.
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5.2.2 Discovery

Atomwise is a deep learning- based AI for the discovery of drug molecules 
(compounds) that have the potential to yield safe and eff ective new drugs. 
This AI meets our two conditions for a meta technology for discovery: (a) the 
number of potential compounds is subject to combinatorial explosion, and 
(b) the AI predicts how basic chemical features combine into more intricate 
features to identify potential compounds for more detailed investigation.

Deep Genomics is a deep learning- based AI that predicts what happens 
in a cell when DNA is altered by natural or therapeutic genetic variation. 
It again meets our two conditions: (a) genotype- phenotype variations are 
subject to combinatorial explosion, and (b) the AI “bridges the genotype- 
phenotype divide” by predicting the results of complex biological processes 
that relate variations in the genotype to observable characteristics of  an 
organism, thus helping to identify potentially valuable therapeutic interven-
tions for further testing.

5.3 A Combinatorial- Based Knowledge Production Function

Figure 5.1 provides an overview of our modeling approach and how it 
relates to the classic Romer/ Jones knowledge production function. The solid 
lines capture the essential character of the Romer/ Jones function. Research-
ers use existing knowledge—the standing- on- shoulders eff ect—to produce 

Fig. 5.1 Romer/ Jones and combinatorial- based knowledge production functions
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new knowledge. The new knowledge then becomes part of the knowledge 
base from which subsequent discoveries are made. The dashed lines capture 
our approach. The existing knowledge base determines the potential new 
combinations that are possible, the majority of which are likely to have no 
value. The discovery of valuable new knowledge is made by searching among 
the massive number of potential combinations. This discovery process is 
aided by meta technologies such as deep learning that allow researchers to 
identify valuable combinations in spaces where existing knowledge interacts 
in often highly complex ways. As with the Romer/ Jones function, the new 
knowledge adds to the knowledge base—and thus the potential combina-
tions of that knowledge base—which subsequent researchers have to work 
with. A feature of our new knowledge production function will be that the 
Romer/ Jones function emerges as a limiting case both with and without 
team production of new knowledge. In this section, we fi rst develop the new 
function without team production of new knowledge; in the next section, 
we extend the function to allow for team production.

 The total stock of  knowledge in the world is denoted as A, which we 
assume initially is measured discretely. An individual researcher has access 
to an amount of knowledge, A� (also assumed to be an integer), so that the 
share of the stock of knowledge available to an individual researcher is A�– 1.2 
We assume that 0 < � < 1. This implies that the share of total knowledge 
accessible to an individual researcher is falling with the total stock of knowl-
edge. This is a manifestation in the model of the “burden of knowledge” 
eff ect identifi ed by Jones (2009)—it becomes more diffi  cult to access all the 
available knowledge as the total stock of knowledge grows. The knowledge 
access parameter, �, is assumed to capture not only what a researcher knows 
at a point in time, but also their ability to fi nd existing knowledge should they 
require it. The value of the parameter will thus be aff ected by the extent to 
which knowledge is available in codifi ed form and can be found as needed 
by researchers. The combination of digital repositories of knowledge and 
search technologies that can predict what knowledge will be most relevant 
to the researcher given the search terms they input—think of the ubiquitous 
Google as well as more specialized search technologies such as Meta� and 
BenchSci—should increase the value of �.

2. Paul Romer emphasized the importance of distinguishing between ideas (a nonrival good) 
and human capital (a rival good). “Ideas are . . . the critical input in the production of more 
valuable human and non- human capital. But human capital is also the most important input 
in the production of new ideas. . . . Because human capital and ideas are so closely related 
as inputs and outputs, it is tempting to aggregate them into a single type of good. . . . It is 
important, nevertheless, to distinguish ideas and human capital because they have diff erent 
fundamental attributes as economic goods, with diff erent implications for economic theory” 
(Romer 1993, 71). In our model, A� is a measure of  a researcher’s human capital. Clearly, 
human capital depends on the existing technological and other knowledge and the researcher’s 
access to that knowledge. In turn, the production of new knowledge depends on the researcher’s 
human capital.
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Innovations occur as a result of combining existing knowledge to produce 
new knowledge. Knowledge can be combined a ideas at a time, where a = 
0, 1 . . . A�. For a given individual researcher, the total number of possible 
combinations of units of existing knowledge (including singletons and the 
null set)3 given their knowledge access is

(1) Zi =
a=0

A
A
a

= 2A .

The total number of potential combinations, Zi, grows exponentially with 
A�. Clearly, if  A is itself  growing exponentially, Zi will be growing at a double 
exponential rate. This is the source of combinatorial explosion in the model. 
Since it is more convenient to work with continuously measured variables in 
the growth model, from this point on we treat A and Zi as continuously mea-
sured variables. However, the key assumption is that the number of potential 
combinations grows exponentially with knowledge access.

The next step is to specify how potential combinations map to discover-
ies. We assume that a large share of potential combinations do not produce 
useful new knowledge. Moreover, of  those combinations that are useful, 
many will have already been discovered and thus are already part of A. This 
latter feature refl ects the fi shing- out phenomenon. The per- period transla-
tion of potential combinations into valuable new knowledge is given by the 
(asymptotically) constant elasticity discovery function

(2) Ai =
Zi 1

=
2A( ) 1   for < � ≤ 1

 = lnZi = ln 2A( ) = ln(2)A   for � = 0,

where 
 is a positively valued knowledge discovery parameter and use is 
made of L’Hôpital’s rule for the limiting case of � = 0.4

For � > 0, the elasticity of new discoveries with respect to the number of 
possible combinations, Zi, is

(3) 
A
Zi

Zi
A
=

Zi
1

(Zi 1) /
=

Zi
Zi 1

,

3. Excluding the singletons and the null set, total number of potential combinations would be 
2A�

 – A� – 1. As singletons and the null set are not true “combinations,” we take equation (1) to 
be an approximation of the true number of potential combinations. The relative signifi cance of 
this approximation will decline as the knowledge base grows, and we ignore it in what follows.

4. L’Hôpital’s rule is often useful where a limit of a quotient is indeterminate. The limit of 
the term in brackets on the right- hand side of equation (2) as � goes to zero is 0 divided by 
0 and is thus indeterminate. However, by L’Hôpital’s rule, the limit of this quotient is equal 
to the limit of the quotient produced by dividing the limit of the derivative of the numerator 
with respect to � by the limit of the derivative of the denominator with respect to �. This limit 
is equal to ln(2)A�.
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which converges to � as the number of potential combinations goes to infi n-
ity. For � = 0, the elasticity of new discoveries is

(4) 
A
Zi

Zi
A
=
Zi

Zi
lnZi

=
1
lnZi

,

which converges to zero as the number of potential combinations goes to 
infi nity.

A number of factors seem likely to aff ect the value of the fi shing- out/ 
complexity parameter, �. First are basic constraints relating to natural 
phenomena that limit what is physically possible in terms of  combining 
existing knowledge to produce scientifi cally or technologically useful new 
knowledge. Pessimistic views on the possibilities for future growth tend to 
emphasize such constraints. Second is the ease of discovering new useful 
combinations that are physically possible. The potentially massive size and 
complexity of the space of potential combinations means that fi nding useful 
combinations can be a needle- in-the- haystack problem. Optimistic views of 
the possibilities for future growth tend to emphasize how the combination 
of AI (embedded in algorithms such as those developed by Atomwise and 
DeepGenomics) and increases in computing power can aid prediction in the 
discovery process, especially where it is diffi  cult to identify patterns of cause 
and eff ect in high- dimensional data. Third, recognizing that future oppor-
tunities for discoveries are path dependent (see, e.g., Weitzman 1998), the 
value of � will depend on the actual path that is followed. To the extent that 
AI can help identify productive paths, it will limit the chances of economies 
going down technological dead ends.

There are LA researchers in the economy each working independently, 
where LA is assumed to be measured continuously. (In section 5.4, we con-
sider the case of team production in an extension of the model.) We assume 
that some researchers will duplicate each other’s discoveries—the standing- 
on- toes eff ect. To capture this eff ect, new discoveries are assumed to take 
place “as if” the actual number of researchers is equal to LA, where 0 ≤ 
 ≤ 1. 
Thus the aggregate knowledge production function for � > 0 is given:

(5) A = LA
2A( ) 1

.

At a point in time (with given values of A and LA), how does an increase 
in � aff ect the rate of discovery of new knowledge, A? The partial derivative 
of A with respect to � is

(6) 
A
=
LA ln(2)A 1( )2A

2 +
LA
2 .

A suffi  cient condition for this partial derivative to be positive is that that 
term in square brackets is greater than zero, which requires
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(7) A > 1
ln(2)

1/

.

We assume this condition holds. Figure 5.2 shows an example of  how A 
(and also the percentage growth of A given that A is assumed to be equal to 
100) varies with � for diff erent assumed values of �. Higher values of � are 
associated with a faster growth rate. The fi gure also shows how � and � 
interact positively: greater knowledge access (as refl ected in a higher value 
of � ) increases the gain associated with a given increase in the value of �.

 We assume, however, that � itself  evolves with A. A larger A means a big-
ger and more complex discovery search space. We further assume that this 
complexity will eventually overwhelm any discovery technology given the 
power of the combinatorial explosion as A grows. This is captured by assum-
ing that � is a declining function of A; that is, � = �(A), where �ʹ(A) < 0. In 
the limit as A goes to infi nity, we assume that �(A) goes to zero, or

(8) lim
A

(A) = 0.

This means that the discovery function converges asymptotically (given sus-
tained growth in A) to

(9) A = ln(2)LAA .

This mirrors the functional form of the Romer/ Jones function and allows 
for decreasing returns to scale in the number of  researchers, depending 
on the size of 
. While the form of the function is familiar by design, its 
combinatorial- based foundations have the advantage of providing richer 
motivations for the key parameters in the knowledge discovery function.

Fig. 5.2 Relationships between new knowledge production, �, and �
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We use the fact that the functional form of equation (9) is the same as that 
used in Jones (1995) to solve for the steady state of the model. More pre-
cisely, given that the limiting behaviour of our knowledge production func-
tion mirrors the function used by Jones and all other aspects of the economy 
are assumed to be identical, the steady state along a balanced growth path 
with constant exponential growth will be the same as in that model.

As we have nothing to add to the other elements of the model, we here 
simply sketch the growth model developed by Jones (1995), referring the 
reader to the original for details. The economy is composed of a fi nal goods 
sector and a research sector. The fi nal goods sector uses labor, LY, and inter-
mediate inputs to produce its output. Each new idea (or “blueprint”) sup-
ports the design of an intermediate input, with each input being supplied by 
a profi t- maximizing monopolist. Given the blueprint, capital, K, is trans-
formed unit for unit in producing the input. The total labor force, L, is fully 
allocated between the fi nal goods and research sectors, so that LY + LA = L. 
We assume the labor force to be equal to the population and growing at 
rate n(>0).

Building on Romer (1990), Jones (1995) shows that the production func-
tion for fi nal goods can be written as

(10) Y = ALY( ) K1 ,

where Y is fi nal goods output. The intertemporal utility function of a rep-
resentative consumer in the economy is given by

(11) U =
0

u(c)e tdt,

where c is per capita consumption and � is the consumer’s discount rate. 
The instantaneous utility function is assumed to exhibit constant relative 
risk aversion, with a coeffi  cient of risk aversion equal to � and a (constant) 
intertemporal elasticity of substitution equal to 1/�.

Jones (1995) shows that the steady- state growth rate of  this economy 
along a balanced growth path with constant exponential growth is given by

(12) gA = gy = gc = gk =
n

1
,

where gA = A/A is the growth rate of the knowledge stock, gy is the growth 
rate of per capita output y , (where y = Y /L), gc is the growth rate of per 
capita output c (where c = C / L) , and gk is the growth rate of the capital labor 
ratio (where k = K / L).

Finally, the steady- state share of labor allocated to the research sector 
is given by

(13) s = 1
1+ 1 / (1 – ) / n( ) + (1 / ) –{ }

.
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We can now consider how changes in the parameters of knowledge pro-
duction given by equation (5) will aff ect the dynamics of  growth in the 
economy. We start with improvement in the availability of AI- based search 
technologies that improve a researcher’s access to knowledge. In the context 
of the model, the availability of AI- based search technologies—for example, 
Google, Meta�, BenchSci, and so forth—should increase the value of � and 
reduce the “burden of knowledge” eff ect. From equation (12), an increase 
in this parameter will increase the steady- state growth rate and also the 
growth rate and the level of per capital output along the transition path to 
the steady state.

We next consider AI- based technologies that increase the value of the 
discovery parameter, 
. As 
 does not appear in the steady state in equation 
(12), the steady- state growth rate is unaff ected. However, such an increase 
will raise the growth rate (and level) along the path to that steady state.

The most interesting potential changes to the possibilities for growth 
come about if  we allow a change to the fi shing- out/ complexity parameter, 
�. We assume that the economy is initially in a steady state and then experi-
ences an increase in � as the result of the discovery of a new AI technology. 
Recall that we assume that � will eventually converge back to zero as the 
complexity that comes with combinatorial explosion eventually overwhelms 
the new AI. Thus, the steady state of the economy is unaff ected. However, 
the transition dynamics are again quite diff erent, with larger increases in 
knowledge for an given starting of the knowledge stock along the path back 
to the steady state.

Using Jones (1995) as the limiting case of the model is appealing because 
we avoid unbounded increases in the growth rate, which would lead to the 
breakdown of any reasonable growth model and indeed a breakdown in the 
normal operations of any actual economy. It is interesting to note, however, 
what happens to growth in the economy if  instead of assuming that � con-
verges asymptotically to zero, it stays at some positive value (even if  very 
small). Dividing both sides of equation (5) by A gives an expression for the 
growth rate of the stock of knowledge

(14) 
A
A
=

ln(2)LA
A

(2A ) 1 .

The partial derivative of this growth rate with respect to A is

(15) 
(A /A)
A

=
LA
A2 1+ 2A( ) ln(2)A 1( ) .

The key to the sign of this derivative is the sign of the term inside the last 
round brackets. This term will be positive for a large enough A. As A is grow-
ing over time (for any positive number of researchers and existing knowledge 
stock), the growth rate must eventually begin to rise once A exceeds some 
threshold value. Thus, with a fi xed positive value of � (or with � converging 
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asymptotically to a positive value), the growth rate will eventually begin to 
grow without bound.

A possible deeper foundation for our combinatorial- based knowledge 
production function is provided by the work on “rugged landscapes” (Kauff -
man 1993). Kauff man’s NK model has been fruitfully applied to questions of 
organizational design (Levinthal 1997), strategy (Rivkin 2000) and science- 
driven technological search (Fleming and Sorenson 2004). In our setting, 
each potential combination of existing ideas accessible to a researcher is 
a point in the landscape represented by a binary string indicating whether 
each idea in the set of accessible knowledge is in the combination (a 1 in the 
string) or not (a 0 in the string). The complexity—or “ruggedness”—of the 
landscape depends on the total number of ideas that can be combined and 
also on the way that the elements of the binary string interact. For any given 
element, its impact on the value of the combination will depend on the value 
of X other elements.5 The larger the value of X the more interrelated are the 
various elements of the string, creating a more rugged knowledge landscape 
and thus a harder the search problem for the innovator.

We can think of would-be innovators as starting from some already known 
valuable combination and searching for other valuable combinations in the 
vicinity of  that combination (see, e.g., Nelson and Winter 1982). Purely 
local search can be thought of  as varying one component of  the binary 
string at a time for some given fraction of the total elements of the string. 
This implies that the total number of combinations that can be searched is 
a linear function of the innovator’s knowledge. This is consistent with the 
Romer/ Jones knowledge production function where the discovery of new 
knowledge is a linear function of knowledge access, Af. Positive values of � 
are then associated with the capacity to search a larger fraction of the space 
of possible combinations, which in turn increases the probability of discov-
ering a valuable combination. Meta technologies such as deep learning can 
be thought of as expanding the capacity to search a given space of potential 
combinations—that is, as increasing the value of �—thereby increasing the 
chance of new discoveries. Given its ability to deal with complex nonlinear 
spaces, deep learning may be especially valuable for search over highly rug-
ged landscapes.

5.4  A Combinatorial- Based Knowledge Production 
Function with Team Production: An Extended Model

Our basic model assumes that researchers working alone combine the 
knowledge to which they have access, A�, to discover new knowledge. In 
reality, new discoveries are increasingly being made by research teams (Jones 
2009; Nielsen 2012; Agrawal, Goldfarb, and Teodoridis 2016). Assuming 

5. K elements in Kauff man’s original notation.
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initially no redundancy in the knowledge that individual members bring to 
the team—that is, collective team knowledge is the sum of the knowledge 
of the individual team members—combining individual researchers into 
teams can greatly expand the knowledge base from which new combina-
tions of existing knowledge can be made. This also opens up the possibility 
of  a positive interaction between factors that facilitate the operation of 
larger teams and factors that raise the size of the fi shing- out/ complexity 
parameter, �. New meta technologies such as deep learning can be more 
eff ective in a world where they are operating on a larger knowledge base 
due to the ability of researchers to more eff ectively pool their knowledge by 
forming larger teams.

We thus extend in this section the basic model to allow for new knowledge 
to be discovered by research teams. For a team with m members and no 
overlap in the knowledge of its members, the total knowledge access for the 
team is simply mA�. (We later relax the assumption of no knowledge overlap 
within a team.) Innovations occur as a result of the team combining exist-
ing knowledge to produce new knowledge. Knowledge can be combined by 
the team a ideas at a time, where a = 0, 1 . . . mA�. For a given team j with 
m members, the total number of possible combinations of units of exist-
ing knowledge (including singletons and the null set) given their combined 
knowledge access is

(16) Z j =
a=0

mA
mA
a

= 2mA .

Assuming again for convenience that A� and Z can be treated as continu-
ous, the per- period translation of potential combinations into valuable new 
knowledge by a team is again given by the (asymptotic) constant elasticity 
discovery function

(17) Aj =
Z j 1

=
(2mA ) 1  for  0 < 1

 = lnZ j = ln(2mA ) = ln (2)mA  for = 0,

where use is again made of L’Hôpital’s rule for the limiting case of � = 0.
The number of researchers in the economy at a point in time is again LA 

(which we now assume is measured discretely). Research teams can poten-
tially be formed from any possible combination of the LA researchers. For 
each of  these potential teams, a entrepreneur can coordinate the team. 
However, for a potential team with m members to form, the entrepreneur 
must have relationships with all m members. The need for a relationship 
thus places a constraint on feasible teams. The probability of a relationship 
existing between the entrepreneur and any given researcher is �, and thus 
the probability of relationships existing between all members of a team of 
size m is �m. Using the formula for a binomial expansion, the expected total 
number of feasible teams is
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(18) S = 
m=0

LA LA
m

m = (1+ )LA .

The average feasible team size is then given by

(19) m =
m=0

LA LA
m

mm

m=0

LA LA
m

m

.

Factorizing the numerator and substituting in the denominator using equa-
tion (18), we obtain a simple expression for the average feasible team size:

(20) m = 
m=0

LA LA
m

mm

m=0

LA LA
m

m

=
(1+ )LA 1 LA

(1+ )LA
=

1+
LA.

Figure 5.3 shows an example of the full distribution of teams sizes (with 
LA = 50) for two diff erent values of �. An increase in � (i.e., an improvement 
in the capability to form teams) will push the distribution to the right and 
increase the average team size.

 We can now write down the form that the knowledge production func-
tion would take if  all possible research teams could form (ignoring for the 
moment any stepping- on- toes eff ects):

(21) A =
m=0

LA LA
m

m (2mA ) 1  for  0 < 1.

Fig. 5.3 Example of how the distribution of team size varies with �
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We next allow for the fact that only a fraction of  the feasible teams will 
actually form. Recognising obvious time constraints on the ability of a given 
researcher to be part of multiple research teams, we impose the constraint 
that each researcher can only be part of one team. However, we assume the 
size of any team that successfully forms is drawn from the same distribution 
over sizes as the potential teams. Therefore, the expected average team size is 
also given by equation (18). With this restriction, we can solve for the total 
number of teams, N, from the equation LA = N[� / (1 + �)]LA, which implies 
N = (1 + �) / �.

Given the assumption that the distribution of actual team sizes is drawn 
from the same distribution as the feasible team sizes, the aggregate knowl-
edge production function (assuming � > 0) is then given by

(22) A = (1+ ) /
(1+ )LA m=0

LA LA
m

m (2mA ) 1

 =
1

(1+ )LA 1
m=0

LA LA
m

m (2mA ) 1 ,

where the fi rst term is the actual number of teams as a fraction of the poten-
tially feasible number of teams. For � = 0 the aggregate knowledge produc-
tion function takes the form

(23) A = 1
(1+ )LA 1

m=0

LA LA
m

mm ln(2)A

 =
1

(1+ )LA 1 (1+ )LA 1 LA ln(2)A( )

 = LAln(2)A .

To see intuitively how an increase in � could aff ect aggregate knowledge 
discovery when � > 0, note that from equation (20) an increase in � will 
increase the average team size of the teams that form. From equation (16), 
we see that for a given knowledge access by an individual researcher, the 
number of potential combinations increases exponentially with the size of 
the team, m (see fi gure 5.4). This implies that combining two teams of size 
mʹ to create a team of size 2mʹ will more than double the new knowledge 
output of the team. Hence, there is a positive interaction between � and �. 
On the other hand, when � = 0, combining the two teams will exactly double 
the new knowledge output given the linearity of the relationship between 
team size and knowledge output. In this case, the aggregate knowledge is 
invariant to the distribution of team sizes.

 To see this formally, note that from equation (23) we know that when � = 0, 
the partial derivative of A with respect to � must be zero since � does not 
appear in the fi nal form of the knowledge production function. This results 
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from the balancing of two eff ects as � increases. The fi rst (negative) eff ect is 
that the number of teams as a share of the potentially possible teams falls. 
The second (positive) eff ect is that the amount of new knowledge production 
if  all possible teams do form rises. We can now ask what happens if  we raise 
� to a strictly positive value. The fi rst of these eff ects is unchanged. But that 
second eff ect will be stronger provided that the knowledge production of a 
team for any given team size rises with �. A suffi  cient condition for this to 
be true is that

(24) A > 1
ln(2)m

1/

 for all m > 0.

We assume that the starting size of the knowledge stock is large enough so 
that this condition holds. Moreover, the partial derivative of A with respect 
to � will be larger the larger is the value of �. We show these eff ects for a 
particular example in fi gure 5.5.

 The possibilities of knowledge overlap at the level of the team and dupli-
cation of knowledge outputs between teams creates additional complica-
tions. To allow for stepping- on- toes eff ects, it is useful to fi rst rewrite equa-
tion (20) as

(25) A = 1+
1+

LA  1
(1+ )LA 1 LA m=0

LA LA
m

m (2mA ) 1 .

We introduce two stepping- on- toes eff ects. First, we allow for knowledge 
overlap within teams to introduce the potential for redundancy of knowl-
edge. A convenient way to introduce this eff ect is to assume that the overlap 

Fig. 5.4 Team knowledge production and team size
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reduces the eff ective average team size in the economy from the viewpoint 
of  generating new knowledge. More specifi cally, we assume the eff ective 
team size is given by

(26) me = m =
1+

LA ,

where 0 ≤ � ≤ 1. The extreme case of � = 0 (full overlap) has each team act-
ing as if  it had eff ectively a single member; the opposite extreme of � = 1 
(no overlap) has no knowledge redundancy at the level of the team. Second, 
we allow for the possibility that new ideas are duplicated across teams. The 
eff ective number of non- idea- duplicating teams is given by

(27) N e = N 1 =
1+

1

,

where 0 ≤ � ≤ 1. The extreme case of � = 0 (no duplication) implies that 
the eff ective number of teams is equal to the actual number of teams; the 
extreme case of � = 1 (full duplication) implies that a single team produces 
the same number of new ideas as the full set of teams.

We can now add the stepping- on- toes eff ects—knowledge redundancy 
within teams and discovery duplication between teams—to yield the general 
form of the knowledge production function for �> 0: 

(28)  A = 1+
1

1+
LA  1

(1+ )LA 1 LA m=0

LA LA
m

m (2mA ) 1 .

If  we take the limit of  equation (24) as � goes to zero, we reproduce the 
limiting case of the knowledge production function. Ignoring integer con-
straints on LA, this knowledge production function again has the form of 
the Romer/ Jones function:

Fig. 5.5 Relationships between new knowledge production, �, and �
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(29) A = 1+
1

1+
LA

1
(1+ )LA 1 LA

LA
m

m ln(2)mA
m=0

LA

 =
1+ 1

1+
LA

(1+ )LA 1 LA
(1+ )LA 1 LA

ln(2)A

 =
1+ 1

1+
ln 2( )LA A .

We note fi nally the presence of the relationship parameter � in the knowl-
edge production equation. This can be taken to refl ect in part the impor-
tance of (social) relationships in the forming of research teams. Advances 
in computer- based technologies such as email and fi le sharing (as well as 
policies and institutions) could also aff ect this parameter (see, e.g., Agrawal 
and Goldfarb [2008] on the eff ects of  the introduction of  precursors to 
today’s internet on collaboration between researchers). Although not the 
main focus of this chapter, being able to incorporate the eff ects of changes 
in collaboration technologies increases the richness of the framework for 
considering the determinants of the effi  ciency of knowledge production.

5.5 Discussion

5.5.1  Something New under the Sun? Deep 
Learning as a New Tool for Discovery

Two key observations motivate the model developed above. First, using 
the analogy of fi nding a needle in a haystack, signifi cant obstacles to dis-
covery in numerous domains of science and technology result from highly 
nonlinear relationships of causes and eff ect in high- dimensional data. Sec-
ond, advances in algorithms such as deep learning (combined with increased 
availability of data and computing power) off er the potential to fi nd relevant 
knowledge and predict combinations that will yield valuable new discoveries.

Even a cursory review of the scientifi c and engineering literatures indi-
cates that needle- in-the- haystack problems are pervasive in many frontier 
fi elds of innovation, especially in areas where matter is manipulated at the 
molecular or submolecular level. In the fi eld of genomics, for example, com-
plex genotype- phenotype interactions make it diffi  cult to identify therapies 
that yield valuable improvements in human health or agricultural produc-
tivity. In the fi eld of  drug discovery, complex interactions between drug 
compounds and biological systems present an obstacle to identifying prom-
ising new drug therapies. And in the fi eld of  material sciences, including 
nanotechnology, complex interactions between the underlying physical and 
chemical mechanisms increases the challenge of predicting the performance 
of potential new materials with potential applications ranging from new 
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materials to prevent traumatic brain injury to lightweight materials for use 
in transportation to reduce dependence on carbon- based fuels (National 
Science and Technology Council 2011).

The apparent speed with which deep learning is being applied in these and 
other fi elds suggests it represents a breakthrough general purpose meta tech-
nology for predicting valuable new combinations in highly complex spaces. 
Although an in-depth discussion of the technical advances underlying deep 
learning is beyond the scope of this chapter, two aspects are worth highlight-
ing. First, previous generations of machine learning were constrained by the 
need to extract features (or explanatory variables) by hand before statistical 
analysis. A major advance in machine learning involves the use of “repre-
sentation learning” to automatically extract the relevant features.6 Second, 
the development and optimization of  multilayer neural networks allows 
for substantial improvement in the ability to predict outcomes in high-
 dimensional spaces with complex nonlinear interactions (LeCun, Bengio, 
and Hinton 2015). A recent review of the use of deep learning in computa-
tional biology, for instance, notes that the “rapid increase in biological data 
dimensions and acquisition rates is challenging conventional analysis strate-
gies,” and that “[m]odern machine learning methods, such as deep learning, 
promise to leverage very large data sets for fi nding hidden structure within 
them, and for making accurate predictions” (Angermueller et al. 2016, 1). 
Another review of  the use of  deep learning in computational chemistry 
highlights how deep learning has a “ubiquity and broad applicability to a 
wide range of challenges in the fi eld, including quantitative activity relation-
ship, virtual screening, protein structure prediction, quantum chemistry, 
materials design and property prediction” (Goh, Hodas, and Vishu 2017).

Although the most publicized successes of  deep learning have been in 
areas such as image recognition, voice recognition, and natural language 
processing, parallels to the way in which the new methods work on unstruc-
tured data are increasingly being identifi ed in many fi elds with similar data 
challenges to produce research breakthroughs.7 While these new general 
purpose research tools will not displace traditional mathematical models of 

6. As described by LeCun, Bengio, and Hinton (2015, 436), “[c]onventional machine- learning 
techniques were limited in their ability to process natural data in their raw form. For decades, 
constructing a pattern- recognition or machine- learning system required careful engineering 
and considerable domain expertise to design a feature extractor that transformed the raw data 
(such as the pixel values of an image) into a suitable internal representation or feature vector 
from which the learning subsystem, often a classifi er, could detect or classify patterns in the 
input. . . . Representation learning is a set of methods that allows a machine to be fed with raw 
data and to automatically discover the representations needed for detection or classifi cation.”

7. A recent review of deep- learning applications in biomedicine usefully draws out these 
parallels: “With some imagination, parallels can be drawn between biological data and the 
types of data deep learning has shown the most success with—namely image and voice data. 
A gene expression profi le, for instance, is essentially a ‘snapshot,’ or image, of what is going 
on in a given cell or tissue in the same way that patterns of pixilation are representative of the 
objects in a picture” (Mamoshina et al. 2016, 1445).
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cause and eff ect and careful experimental design, machine- learning methods 
such as deep learning off er a promising new tool for discovery—including 
hypothesis generation—where the complexity of the underlying phenomena 
present obstacles to more traditional methods.8

5.5.2  Meta Ideas, Meta Technologies, and 
General Purpose Technologies

We conceptualize AIs as general purpose meta technologies—that is, 
general purpose technologies (GPTs) for the discovery of new knowledge. 
Figure 5.6 summarises the relationship between Paul Romer’s broader idea 
of meta ideas, meta technologies, and GPTs. Romer defi nes a meta idea as an 
idea that supports the production and transmission of other ideas (see, e.g., 
Romer 2008). He points to such ideas as the patent, the agricultural exten-
sion station, and the peer- review system for research grants as examples 
of meta ideas. We think of meta technologies as a subset of Romer’s meta 
ideas (the area enclosed by the dashed lines in fi gure 5.6), where the idea for 
how to discover new ideas is embedded in a technological form such as an 
algorithm or measurement instrument.

 Elhanan Helpman (1998, 3) argues that a “drastic innovation qualifi es 
as a GPT if  it has the potential for pervasive use in a wide range of sec-
tors in ways that drastically change their mode of operation.” He further 
notes two important features necessary to qualify as a GPT: “generality 
of purpose and innovational complementarities” (see also Bresnahan and 
Trajtenberg 1995). Not all meta technologies are general purpose in this 
sense. The set of general purpose meta technologies is given by the inter-
section of the two circles in fi gure 5.6. Cockburn, Henderson, and Stern 
(chapter 4, this volume) give the example of functional MRI as an example 
of a discovery tool that lacks the generality of purpose required for a GPT. 
In contrast, the range of application of deep learning as a discovery tool 
would appear to qualify it as a GPT. It is worth noting that some authors 
discuss GPTs as technologies that more closely align with our idea of a meta 
technology. Rosenberg (1998), for example, provides a fascinating examina-
tion of chemical engineering as an example of GPT. Writing of this branch 
of engineering, he argues that a “discipline that provides the concepts and 
methodologies to generate new or improved technologies over a wide range 
of downstream economic activity may be thought of as an even purer, or 
higher order, GPT” (Rosenberg 1998, 170).

8. A recent survey of the emerging use of machine learning in economics (including policy 
design) provides a pithy characterization of the power of the new methods: “The appeal of 
machine learning is that it manages to uncover generalizable patterns. In fact, the success of 
machine learning at intelligence tasks is largely due to its ability to discover complex structure 
that was not specifi ed in advance. It manages to fi t complex and very fl exible functional forms 
to the data without simply overfi tting; it fi nds functions that work well out of sample” (Mul-
lainathan and Spiess 2017, 88).
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Our concentration on general purpose meta technologies (GPMTs) par-
allels Cockburn, Henderson, and Stern’s (chapter 4, this volume) idea of a 
general purpose invention of a method of invention. This idea combines 
the idea of a GPT with Zvi Griliches’ (1957) idea of the “invention of a 
method of invention,” or IMI. Such an invention has the “potential for a 
more infl uential impact than a single invention, but is also likely to be associ-
ated with a wide variation in the ability to adapt the new tool to particular 
settings, resulting in a more heterogeneous pattern of diff usion over time” 
(Cockburn, Henderson, and Stern, chapter 4, this volume). They see some 
emerging AIs such as deep learning as candidates for such general purpose 
IMIs and contrast these with AIs underpinning robotics that, while being 
GPTs, do not have the characteristic features of an IMI.

5.5.3  Beyond AI: Potential Uses of the 
New Knowledge Production Function

Although the primary motivation for this chapter is to explore how break-
throughs in AI could aff ect the path of economic growth, the knowledge 
production function we develop is potentially of broader applicability. By 
deriving the Romer/ Jones knowledge production function as the limiting 
case of a more general function, our analysis may also contribute to pro-
viding candidate microfoundations for that function.9 The key conceptual 

Fig. 5.6 Relationships between meta ideas, meta technologies, and general 
purpose technologies

9. In developing and applying the Romer/ Jones knowledge production function, growth theo-
rists have understood its potential combinatorial underpinnings and the limits of the Cobb- 
Douglas form. Charles Jones (2005) observes in his review chapter on “Growth and Ideas” for 
the Handbook of Economic Growth: “While we have made much progress in understanding 
economic growth in a world where ideas are important, there remain many open, interesting 
research questions. The fi rst is ‘What is the shape of the idea production function?’ How do 
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change is to model discovery as operating on the space of potential combi-
nations (rather than directly on the knowledge base itself ). As in Weitzman 
(1998), our production function focuses attention explicitly on how new 
knowledge is discovered by combining existing knowledge, which is left 
implicit in the Romer/ Jones formulation. While this shift in emphasis is 
motivated by the particular way in which deep learning can aid discovery—
allowing researchers to uncover otherwise hard- to-fi nd valuable combina-
tions in highly complex spaces—the view of discovery as the innovative 
combination of what is already known has broader applicability. The more 
general function also has the advantage of  providing a richer parameter 
space for mapping how meta technologies or policies could aff ect knowledge 
discovery. The � parameter captures how access to knowledge at the indi-
vidual researcher level determines the potential for new combinations to be 
made given the inherited knowledge base. The � parameter captures how 
the available potential combinations (given the access to knowledge) map 
to new discoveries. Finally, the � parameter captures the ease of forming 
research teams and ultimately the average team size. To the extent that the 
capacity to bring the knowledge of individual researchers together through 
research teams directly aff ects the possible combinations, the ease of team 
formation can have an important eff ect on how the existing knowledge base 
is utilized for new knowledge discovery.

We hope this more general function will be of  use in other contexts. 
In a recent commentary celebrating the twenty- fi fth anniversary of  the 
publication of  Romer (1990), Joshua Gans (2015) observes that the Romer 
growth model has not been as infl uential on the design of  growth policy as 
might have been expected despite its enormous infl uence on the subsequent 
growth theory literature. The reason he identifi es is that it abstracts away 
“some of the richness of  the microeconomy that give rise to new ideas and 
also their dissemination” (Gans 2015). By expanding the parameter space, 
our function allows for the inclusion of  more of  this richness, including the 
role that meta technologies such as deep learning can play in knowledge 
access and knowledge discovery, but potentially other policy and insti-
tutional factors that aff ect knowledge access, discovery rates, and team 
formation as well.

ideas get produced? The combinatorial calculations of Romer (1993) and Weitzman (1998) 
are fascinating and suggestive. The current research practice of modelling the idea production 
function as a stable Cobb- Douglas combination of research and the existing stock of ideas is 
elegant, but at this point we have little reason to believe it is correct. One insight that illustrates 
the incompleteness of our knowledge is that there is no reason why research productivity should 
be a smooth monotonic function of the stock of ideas. One can easily imagine that some ideas 
lead to domino- like unravelling of phenomena that were previously mysterious . . . Indeed, 
perhaps decoding of the human genome or the continued boom in information technology will 
lead to a large upward shift in the production function for ideas. On the other hand, one can 
equally imagine situations where research productivity unexpectedly stagnates, if  not forever 
then at least for a long time” (Jones 2005, 1107).
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5.6 Concluding Thoughts: A Coming Singularity?

We developed this chapter upon a number of prior ideas. First, the pro-
duction of new knowledge is central to sustaining economic growth (Romer 
1990, 1993). Second, the production of new ideas is fundamentally a combi-
natorial process (Weitzman 1998). Third, given this combinatorial process, 
technologies that predict what combinations of existing knowledge will yield 
useful new knowledge hold out the promise of improving growth prospects. 
Fourth, breakthroughs in AI represent a potential step change in the ability 
of algorithms to predict what knowledge is potentially useful to researchers 
and also to predict what combinations of existing knowledge will yield use-
ful new discoveries (LeCun, Bengio, and Hinton 2015).

In a provocative recent paper, William Nordhaus (2015) explored the pos-
sibilities for a coming “economic singularity,” which he defi nes as “[t]he 
idea . . . that rapid growth in computation and artifi cial intelligence will 
cross some boundary or singularity after which economic growth will accel-
erate sharply as an ever- accelerating pace of improvements cascade through 
the economy.” Central to Nordhaus’ analysis is that rapid technological 
advance is occurring in a relatively small part of  the economy (see also 
Aghion, Jones, and Jones 2018). To generate more broadly based rapid 
growth, the products of the new economy need to substitute for products 
on either the demand- or supply- side of the economy. His review of the evi-
dence—including, critically, the relevant elasticities of substitution—leads 
him to conclude that a singularity through this route is highly unlikely.

However, our chapter’s analysis suggests an alternative route to an eco-
nomic singularity—a broad- based alteration in the economy’s knowledge 
production function. Given the centrality of new knowledge to sustained 
growth at the technological frontier, it seems likely that if  an economic sin-
gularity were to arise, it would be because of some signifi cant change to the 
knowledge production function aff ecting a number of domains outside of 
information technology itself. In a world where new knowledge is the result 
of  combining existing knowledge, AI technologies that help ease needle- 
in-the- haystack discovery challenges could aff ect growth prospects, at least 
along the transition path to the steady state. It does not take an impossible 
leap of  imagination to see how new meta technologies such as AI could 
alter—perhaps modestly, perhaps dramatically—the knowledge production 
function in a way that changes the prospects for economic growth.
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